home *** CD-ROM | disk | FTP | other *** search
/ PCGUIA 127 / PC Guia 127.iso / Software / Produtividade / OpenOffice.org 2.0.1 / openofficeorg4.cab / test_complex.py < prev    next >
Text File  |  2005-11-19  |  12KB  |  317 lines

  1. import unittest, os
  2. from test import test_support
  3.  
  4. import warnings
  5. warnings.filterwarnings(
  6.     "ignore",
  7.     category=DeprecationWarning,
  8.     message=".*complex divmod.*are deprecated"
  9. )
  10.  
  11. from random import random
  12.  
  13. # These tests ensure that complex math does the right thing
  14.  
  15. class ComplexTest(unittest.TestCase):
  16.  
  17.     def assertAlmostEqual(self, a, b):
  18.         if isinstance(a, complex):
  19.             if isinstance(b, complex):
  20.                 unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
  21.                 unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
  22.             else:
  23.                 unittest.TestCase.assertAlmostEqual(self, a.real, b)
  24.                 unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
  25.         else:
  26.             if isinstance(b, complex):
  27.                 unittest.TestCase.assertAlmostEqual(self, a, b.real)
  28.                 unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
  29.             else:
  30.                 unittest.TestCase.assertAlmostEqual(self, a, b)
  31.  
  32.     def assertCloseAbs(self, x, y, eps=1e-9):
  33.         """Return true iff floats x and y "are close\""""
  34.         # put the one with larger magnitude second
  35.         if abs(x) > abs(y):
  36.             x, y = y, x
  37.         if y == 0:
  38.             return abs(x) < eps
  39.         if x == 0:
  40.             return abs(y) < eps
  41.         # check that relative difference < eps
  42.         self.assert_(abs((x-y)/y) < eps)
  43.  
  44.     def assertClose(self, x, y, eps=1e-9):
  45.         """Return true iff complexes x and y "are close\""""
  46.         self.assertCloseAbs(x.real, y.real, eps)
  47.         self.assertCloseAbs(x.imag, y.imag, eps)
  48.  
  49.     def assertIs(self, a, b):
  50.         self.assert_(a is b)
  51.  
  52.     def check_div(self, x, y):
  53.         """Compute complex z=x*y, and check that z/x==y and z/y==x."""
  54.         z = x * y
  55.         if x != 0:
  56.             q = z / x
  57.             self.assertClose(q, y)
  58.             q = z.__div__(x)
  59.             self.assertClose(q, y)
  60.             q = z.__truediv__(x)
  61.             self.assertClose(q, y)
  62.         if y != 0:
  63.             q = z / y
  64.             self.assertClose(q, x)
  65.             q = z.__div__(y)
  66.             self.assertClose(q, x)
  67.             q = z.__truediv__(y)
  68.             self.assertClose(q, x)
  69.  
  70.     def test_div(self):
  71.         simple_real = [float(i) for i in xrange(-5, 6)]
  72.         simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
  73.         for x in simple_complex:
  74.             for y in simple_complex:
  75.                 self.check_div(x, y)
  76.  
  77.         # A naive complex division algorithm (such as in 2.0) is very prone to
  78.         # nonsense errors for these (overflows and underflows).
  79.         self.check_div(complex(1e200, 1e200), 1+0j)
  80.         self.check_div(complex(1e-200, 1e-200), 1+0j)
  81.  
  82.         # Just for fun.
  83.         for i in xrange(100):
  84.             self.check_div(complex(random(), random()),
  85.                            complex(random(), random()))
  86.  
  87.         self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j)
  88.         # FIXME: The following currently crashes on Alpha
  89.         # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)
  90.  
  91.     def test_truediv(self):
  92.         self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
  93.         self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
  94.  
  95.     def test_floordiv(self):
  96.         self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2)
  97.         self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j)
  98.  
  99.     def test_coerce(self):
  100.         self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000)
  101.  
  102.     def test_richcompare(self):
  103.         self.assertRaises(OverflowError, complex.__eq__, 1+1j, 1L<<10000)
  104.         self.assertEqual(complex.__lt__(1+1j, None), NotImplemented)
  105.         self.assertIs(complex.__eq__(1+1j, 1+1j), True)
  106.         self.assertIs(complex.__eq__(1+1j, 2+2j), False)
  107.         self.assertIs(complex.__ne__(1+1j, 1+1j), False)
  108.         self.assertIs(complex.__ne__(1+1j, 2+2j), True)
  109.         self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j)
  110.         self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j)
  111.         self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j)
  112.         self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j)
  113.  
  114.     def test_mod(self):
  115.         self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j)
  116.  
  117.         a = 3.33+4.43j
  118.         try:
  119.             a % 0
  120.         except ZeroDivisionError:
  121.             pass
  122.         else:
  123.             self.fail("modulo parama can't be 0")
  124.  
  125.     def test_divmod(self):
  126.         self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j)
  127.  
  128.     def test_pow(self):
  129.         self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
  130.         self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
  131.         self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
  132.         self.assertAlmostEqual(pow(1j, -1), 1/1j)
  133.         self.assertAlmostEqual(pow(1j, 200), 1)
  134.         self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)
  135.  
  136.         a = 3.33+4.43j
  137.         self.assertEqual(a ** 0j, 1)
  138.         self.assertEqual(a ** 0.+0.j, 1)
  139.  
  140.         self.assertEqual(3j ** 0j, 1)
  141.         self.assertEqual(3j ** 0, 1)
  142.  
  143.         try:
  144.             0j ** a
  145.         except ZeroDivisionError:
  146.             pass
  147.         else:
  148.             self.fail("should fail 0.0 to negative or complex power")
  149.  
  150.         try:
  151.             0j ** (3-2j)
  152.         except ZeroDivisionError:
  153.             pass
  154.         else:
  155.             self.fail("should fail 0.0 to negative or complex power")
  156.  
  157.         # The following is used to exercise certain code paths
  158.         self.assertEqual(a ** 105, a ** 105)
  159.         self.assertEqual(a ** -105, a ** -105)
  160.         self.assertEqual(a ** -30, a ** -30)
  161.  
  162.         self.assertEqual(0.0j ** 0, 1)
  163.  
  164.         b = 5.1+2.3j
  165.         self.assertRaises(ValueError, pow, a, b, 0)
  166.  
  167.     def test_boolcontext(self):
  168.         for i in xrange(100):
  169.             self.assert_(complex(random() + 1e-6, random() + 1e-6))
  170.         self.assert_(not complex(0.0, 0.0))
  171.  
  172.     def test_conjugate(self):
  173.         self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)
  174.  
  175.     def test_constructor(self):
  176.         class OS:
  177.             def __init__(self, value): self.value = value
  178.             def __complex__(self): return self.value
  179.         class NS(object):
  180.             def __init__(self, value): self.value = value
  181.             def __complex__(self): return self.value
  182.         self.assertEqual(complex(OS(1+10j)), 1+10j)
  183.         self.assertEqual(complex(NS(1+10j)), 1+10j)
  184.         self.assertRaises(TypeError, complex, OS(None))
  185.         self.assertRaises(TypeError, complex, NS(None))
  186.  
  187.         self.assertAlmostEqual(complex("1+10j"), 1+10j)
  188.         self.assertAlmostEqual(complex(10), 10+0j)
  189.         self.assertAlmostEqual(complex(10.0), 10+0j)
  190.         self.assertAlmostEqual(complex(10L), 10+0j)
  191.         self.assertAlmostEqual(complex(10+0j), 10+0j)
  192.         self.assertAlmostEqual(complex(1,10), 1+10j)
  193.         self.assertAlmostEqual(complex(1,10L), 1+10j)
  194.         self.assertAlmostEqual(complex(1,10.0), 1+10j)
  195.         self.assertAlmostEqual(complex(1L,10), 1+10j)
  196.         self.assertAlmostEqual(complex(1L,10L), 1+10j)
  197.         self.assertAlmostEqual(complex(1L,10.0), 1+10j)
  198.         self.assertAlmostEqual(complex(1.0,10), 1+10j)
  199.         self.assertAlmostEqual(complex(1.0,10L), 1+10j)
  200.         self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
  201.         self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
  202.         self.assertAlmostEqual(complex(3.14), 3.14+0j)
  203.         self.assertAlmostEqual(complex(314), 314.0+0j)
  204.         self.assertAlmostEqual(complex(314L), 314.0+0j)
  205.         self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
  206.         self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
  207.         self.assertAlmostEqual(complex(314, 0), 314.0+0j)
  208.         self.assertAlmostEqual(complex(314L, 0L), 314.0+0j)
  209.         self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
  210.         self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
  211.         self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
  212.         self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
  213.         self.assertAlmostEqual(complex("1"), 1+0j)
  214.         self.assertAlmostEqual(complex("1j"), 1j)
  215.         self.assertAlmostEqual(complex(),  0)
  216.         self.assertAlmostEqual(complex("-1"), -1)
  217.         self.assertAlmostEqual(complex("+1"), +1)
  218.  
  219.         class complex2(complex): pass
  220.         self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
  221.         self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
  222.         self.assertAlmostEqual(complex(real=17+23j), 17+23j)
  223.         self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
  224.         self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)
  225.  
  226.         c = 3.14 + 1j
  227.         self.assert_(complex(c) is c)
  228.         del c
  229.  
  230.         self.assertRaises(TypeError, complex, "1", "1")
  231.         self.assertRaises(TypeError, complex, 1, "1")
  232.  
  233.         self.assertEqual(complex("  3.14+J  "), 3.14+1j)
  234.         if test_support.have_unicode:
  235.             self.assertEqual(complex(unicode("  3.14+J  ")), 3.14+1j)
  236.  
  237.         # SF bug 543840:  complex(string) accepts strings with \0
  238.         # Fixed in 2.3.
  239.         self.assertRaises(ValueError, complex, '1+1j\0j')
  240.  
  241.         self.assertRaises(TypeError, int, 5+3j)
  242.         self.assertRaises(TypeError, long, 5+3j)
  243.         self.assertRaises(TypeError, float, 5+3j)
  244.         self.assertRaises(ValueError, complex, "")
  245.         self.assertRaises(TypeError, complex, None)
  246.         self.assertRaises(ValueError, complex, "\0")
  247.         self.assertRaises(TypeError, complex, "1", "2")
  248.         self.assertRaises(TypeError, complex, "1", 42)
  249.         self.assertRaises(TypeError, complex, 1, "2")
  250.         self.assertRaises(ValueError, complex, "1+")
  251.         self.assertRaises(ValueError, complex, "1+1j+1j")
  252.         self.assertRaises(ValueError, complex, "--")
  253.         if test_support.have_unicode:
  254.             self.assertRaises(ValueError, complex, unicode("1"*500))
  255.             self.assertRaises(ValueError, complex, unicode("x"))
  256.  
  257.         class EvilExc(Exception):
  258.             pass
  259.  
  260.         class evilcomplex:
  261.             def __complex__(self):
  262.                 raise EvilExc
  263.  
  264.         self.assertRaises(EvilExc, complex, evilcomplex())
  265.  
  266.         class float2:
  267.             def __init__(self, value):
  268.                 self.value = value
  269.             def __float__(self):
  270.                 return self.value
  271.  
  272.         self.assertAlmostEqual(complex(float2(42.)), 42)
  273.         self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
  274.         self.assertRaises(TypeError, complex, float2(None))
  275.  
  276.     def test_hash(self):
  277.         for x in xrange(-30, 30):
  278.             self.assertEqual(hash(x), hash(complex(x, 0)))
  279.             x /= 3.0    # now check against floating point
  280.             self.assertEqual(hash(x), hash(complex(x, 0.)))
  281.  
  282.     def test_abs(self):
  283.         nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)]
  284.         for num in nums:
  285.             self.assertAlmostEqual((num.real**2 + num.imag**2)  ** 0.5, abs(num))
  286.  
  287.     def test_repr(self):
  288.         self.assertEqual(repr(1+6j), '(1+6j)')
  289.  
  290.     def test_neg(self):
  291.         self.assertEqual(-(1+6j), -1-6j)
  292.  
  293.     def test_file(self):
  294.         a = 3.33+4.43j
  295.         b = 5.1+2.3j
  296.  
  297.         fo = None
  298.         try:
  299.             fo = open(test_support.TESTFN, "wb")
  300.             print >>fo, a, b
  301.             fo.close()
  302.             fo = open(test_support.TESTFN, "rb")
  303.             self.assertEqual(fo.read(), "%s %s\n" % (a, b))
  304.         finally:
  305.             if (fo is not None) and (not fo.closed):
  306.                 fo.close()
  307.             try:
  308.                 os.remove(test_support.TESTFN)
  309.             except (OSError, IOError):
  310.                 pass
  311.  
  312. def test_main():
  313.     test_support.run_unittest(ComplexTest)
  314.  
  315. if __name__ == "__main__":
  316.     test_main()
  317.